

SHARC® - уникальная дуга производит фурор...

Бренд **Special Hermann ARC** компании Hermann GmbH представляет инновационный, запатентованный процесс формирования дуги при TIG-сварке (**DC и AC**), который демонстрирует значительные преимущества в сферах применения и экономичность по сравнению с уже существующими процессами TIG-стандарт и TIG-импульс.

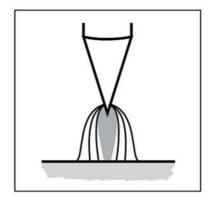
Развитие технологии **SHARC**® позволило создать стреловидную дугу с высокими динамическими характеристиками. По результатам независимого исследования, параметры энергетической плотности этой чрезвычайно концентрированной дуги находятся между лазерным лучом и плазменной дугой.

Технология SHARC® соединяет в себе преимущества плазменной дуги и дуги TIG:

Потребляемая мощность при использовании технологии SHARC® приблизительно такая же, как при плазменной сварке. В то же время, она сохраняет все положительные характеристики дуги TIG, такие как более низкая температура в окружных зонах дуги, и плавный переход от сварного шва к материалу основы.

В ручном и автоматическом режиме технология SHARC® способствует увеличению скорости сварки. Кроме этого, существенно повышается качество сварного шва и снижаются дополнительные расходы, связанные со сварочным процессом (снижение деформации, улучшение глубины проплавления, уменьшение цветов побежалости, увеличение прочности в околошовной зоне (ОШЗ), отказ от присадочных материалов).

Наиболее важные преимущества SHARC®:

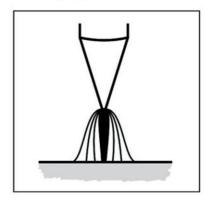

- Увеличение производительности сварки и в то же время обеспечение превосходного качества сварного шва
- Улучшенные характеристики сплавления в зоне термического влияния (ЗТВ)
- Уменьшение деформаций в результате снижения удельной теплоемкости
- 🗼 Стабильная дуга даже при низком сварочном токе
- ★ Надежное зажигание на высокоглянцевых отполированных поверхностях (напр., нерж. сталь)
- Стабильность сварочного процесса даже при малой длине дуги.
- Высокая управляемость сварочной ванной даже при высоком сварочном токе
- Хорошая глубина проплавления даже при высокой скорости сварки
- Неизменное качество шва даже несмотря на изменения длины дуги
- Снижается риск растрескивания сварочных материалов при сварке без присадочных материалов
- Надежный корень шва при сварке алюминия с полным проваром (AC)
- Снижается интенсивность цветов побежалости хромоникелевых сталей. Отсюда повышение коррозионной стойкости и уменьшение необходимости в кислотной промывке.

Материалы:

ТІG-сварка по технологии SHARC® может быть применяться для следующих материалов: сталь, нерж. сталь, медь, титан, алюминий (AC/DC), а также для специальных материалов, например, имеющих никелевую основу.

Дуги в сравнении...

Стандартная дуга TIG:


Для стандартной дуги TIG типичной является колоколообразная форма. Дуга не направлена непосредственно на конец вольфрамового электрода.

Дуга с такой характеристикой может легко отклонятся при большой скорости сварки или в случае нарушений, таких как бесформенный корень шва.

При **наклоне горелки TIG** так же, как и в случае увеличения скорости сварки, **столб** этой колоколообразной нецентрированной дуги **отклоняется**.

Вследствие **неоптимальной фокусировки дуги зона термического влияния расширяется** (Результат: **деформация).**

SHARC AYEA:

Основной характеристикой технологии SHARC® является высокая концентрация дуги (энергетическая плотность между лазерным лучом и плазменной дугой), отчетливая опорная точка которой находится прямо на конце вольфрамового электрода.

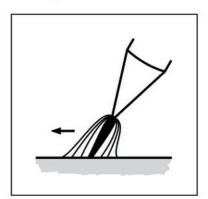
Столб этой уникальной высокопроизводительной дуги **не отклоняется** даже при большом наклоне горелки TIG (до 45°)

Даже при высокой скорости сварки, до 50 м/мин включительно, значительного отклонения дуги SHARC® не наблюдается. Это свойство дуги позволяет производить узкий шов с глубоким проваром. В то же время процесс SHARC® обеспечивает оптимальное смачивание, что, в свою очередь, способствует установлению плавного, без подрезов, перехода от сварного шва к материалу основы.

Кроме этого, снижение удельной теплоемкости приводит к уменьшению деформаций и улучшению характеристик сплавления в 3ТВ.

Преимущества дуги SHARK при высоких скоростях сварки

Стандартная дуга TIG:



Оптимальный перенос энергии дуги возможен только по длинной оси конца электрода. Условием для этого является концентрация энергии на острие дуги.

Из-за колоколообразной формы дуги при увеличении скорости сварки происходит значительное отклонение дуги с последующей потерей энергии.

Исправляются такие последствия только с помощью магнитного воздействия, либо путем снижения скорости сварки.


SHARC дуга:

Поскольку дуга SHARC® концентрируется непосредственно на острие электрода, энергия дуги может переноситься идеально даже при большой скорости сварки.

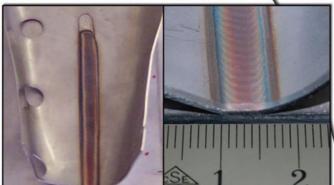
Дуга продолжает оставаться стабильной. Дуга SHARC удерживается на оси электрода. **Дуга не отклоняется.**

DC-сварка (пост. током) по технологии SHARC® (возможна только с помощью SHARC®)

Кольцевой шов трубы обогрева с подачей холодной проволоки по технологии TIG без подготовки соединения. Стыковая сварка рабочих деталей была произведена всплошную.

Результат: аккуратный сварочный шов **без усиливающих выпуклостей** и **без подрезов.** Кроме этого, **шов очень узкий** и имеет **значительную корневую основу.**

Параметры сварки:


Материал: S235JR

Толщина материала: 3.0 мм

Защитный газ: Ar

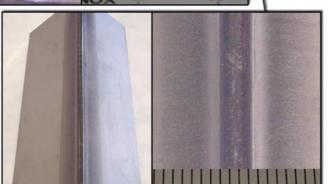
Присадочный материал: DIN EN 440 - G3Si1 (SG2) (Ø 1,0 мм)

I₂: 220 A / vS: 0.8 м/мин

І-образный шов: 1,5-мм лист был сварен при помощи SHARC® плотно, без использования присадки, с 3.00-мм листом. После этого 1,5-мм лист был надут для получения формы емкости.

Сварка прямым наслоением (импульсная) при помощи технологии SHARC® обеспечивает СКВОЗНОЕ проплавление при сварке листа покрытия.

Параметры сварки:


Материал: 1.4301

Толщина материала: материал основы 3,0 мм, лист покрытия **1,5** мм **неперфорированный**

Защитный газ: Ar

I₂: 190 / 80 A t₁: 0,3 сек/t₂: 0,3 сек

vS: 0.6 м/мин

Торцевой шов SHARC®: Несмотря на высокую скорость сварки, с учетом того, что сварке подвергается листовой металл с электрогальваническим покрытием,

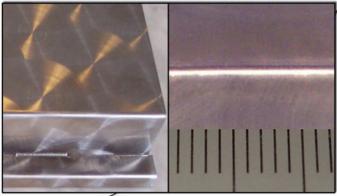
осаждение паровой фазы на игле не происходит. Даже при большой скорости сварки процесс SHARC® обеспечивает надежность сварки и качественную последовательность прохождения основного шва.

Параметры сварки:

Материал: S235JR с электрогальваническим покрытием

Толщина материала: 1,5 мм/присад. мат-л: --Защитный газ: Ar

 I_2 : 180 A / vS: 1.8 м/мин

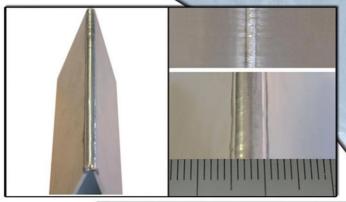


С помощью сварки SHARC® внахлестку были одновременно наварены 4 различных слоя материала на материал (4 мм) гибкой соединительной трубы (основы) выпускной трубы (одновременная сварка 5 слоев (арматурная сетка, гибкая труба, фланец и два крепежных кольца)). Процесс SHARC® помог сократить деформацию с 1,2 мм до 0,2 мм.

Параметры сварки:

Материал: 1.4301 / Присад. мат-л: -- Защитный газ: 98 % Ar/2 % $\rm H_2$

I₂: 220 A vS: 1 м/мин


Угловая сварка SHARC® двери холодильной камеры (нерж. 0,6 мм) без присадочного мат-ла: благодаря использованию процесса SHARC® достигается превосходная структура сварочной ванны и в результате – превосходный сварной шов (без прожогов / без цветов побежалости).

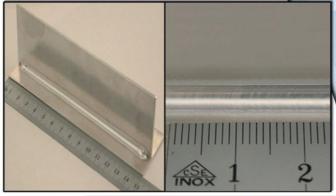
Современные сварочные процессы не позволяют производить угловые швы без присадочного материала, поскольку невозможно создать необходимый уровень наслоения в сварочной ванне. Кроме этого, горячие околошовные зоны стандартной дуги расплавили бы торцы (результат: прожоги / брак сварного соединения).

Параметры сварки:

Материал: 1.4301 / Толщина материала: 0.6 мм Защитный газ: 98% Ar/2 % H₂ / I₂: 50 A / vS: 0.6 м/мин

AC/DC-сварка по технологии SHARC® (возможна только с помощью SHARC®)

AC/DC сварка алюминия угловым швом (30°) с корнем правильной глубины провара без бороздки посередине. Невозможный при использовании обычных сварочных режимов, в режиме SHARC® этот результат достижим! Использование этого инновационного сварочного процесса позволяет даже избежать трещин в сварном шве, что является значительным преимуществом, поскольку образование трещин в таких случаях до сих пор являлось проблемой.


Параметры сварки:

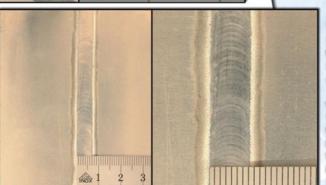
Материал: AlMg3 / Толщина материала: 2,0 мм

Защитный газ: Ar

Частота=200 Гц / Баланс: + 5 % / - 95 %

I₂: 135 A / vS: 0,6 м/мин

Результатом угловой сварки AlMg3 без присадочного материала с помощью технологии является узкий SHARC® очень высокоглянцевый шов С небольшим окислением только по краям.


Кроме этого в шве наблюдается минимальная деформация и не наблюдаются трещины.

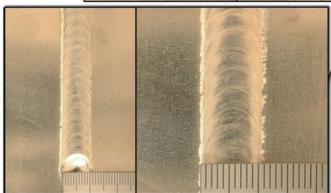
Параметры сварки:

Материал: AlMg3 / Толщина материала: 2 мм

Защитный газ: Ar Частота: 200 Гц

Баланс: + 5 % / - 95 % I₂: 135 A / vS: 0,42 м/мин

AC/DC-сварка прямого стыка подготовки шва на медной подкладке по технологии SHARC® демонстрирует полное проплавление корня. В сварочном шве не наблюдаются трещины или подтеки.


Параметры сварки:

Материал: AlMg3 / Толщина материала: 3 мм

Присадочный материал: --

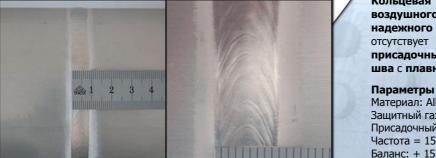
Защитный газ: Ar Частота = 150 Гц

Баланс: + 15 % / - 85 % I₂: 220 A / vS: 0,7 м/мин

AC/DC-сварка прямого стыка без подготовки шва на медной подкладке по технологии SHARC® демонстрирует полное проплавление корня. На шве наблюдается небольшая выпуклость с плавным переходом от шва к материалу основы. Окисленная околошовная зона очень узкая.

Параметры сварки:

Материал: AlMg3 / Толщина материала: 3 мм


Защитный газ: Ar

Присадочный материал: AlMg5 (Ø 1,2 мм)

Частота = 150 Гц

Баланс: + 15 % / - 85 %

I₂: 230 A / vS: 0,5 м/мин

Кольцевая сварка АС/DC без подготовки шва и без воздушного зазора (без прослойки): Производство надежного корня – даже в случае снижения энергии, так как отсутствует теплопередача через прослойку. Использование присадочных материалов дает небольшую выпуклость шва с плавным переходом от шва к материалу основы.

Параметры сварки:

Материал: AlMg3 / Толщина материала: 3 мм

Защитный газ: Аг

Присадочный материал: ALMg5 (Ø 1,2 мм)

Частота = 150 Гц

Баланс: + 15 % / - 85 %

I₂: 175 A

vS: 0.5 м/мин

SHARC® в автоматике

Сварочные аппараты SHARC® T

ROBO обеспечены системой подключения к автоматизированной /роботизированной сварочной системе с автоматическим контролем процесса.

Благодаря особым характеристикам дуги SHARC® и вытекающим из этого преимуществам в процессе сварки, сварочные аппараты SHARC® T ROBO наилучшим образом подходят для автоматической сварки.

Пример автоматического процесса SHARC® TIG; Профильная труба для (коллектора)

Задание:

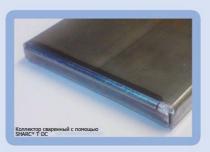
- Рост скорости сварки
- Без повторной обработки Сварочный шов должен быть полностью герметичен, (предельная нагрузка 20 бар, давление контрольного теста 7,8 бар)
- Сварочный шов должен удовлетворять высоким визуальным требованиям, так как трубы являются видимыми деталями.

Процесс SHARC® обладает преимуществами даже при сварке объектов, обычно выполняемых лазерной сваркой, благодаря стрелоподобной форме и высокой концентрации дуги, энергетическая плотность которой находится в диапазоне между плазменной дугой и лазерным лучом.

Сварка SHARC® TIG представляет методику соединения деталей, которые до сих пор сваривались исключительно лазером, что, с учетом капитальных и эксплуатационных расходов,

значительно удешевляет процесс по сравнению с лазерной системой

Рис. справа: автоматизация с помощью робота Kawasaki, Сварочный аппарат TIG SHARC® T AC/DC ROBO, Устройство подачи **H-CW 8-R** и двухтактное устройство подачи Push-Pull PPV1-HCW8


Результат с SHARC® TIG (DC):

→ в 6 раз быстрее + улучшенное качество

Сварочные параметры:

материал: S235JR/толщина материала: 1,5 мм защитный газ: 92 % Ar / 8 % CO2 присадочный материал: -повторная обработка: -12: 120 A / vS: 1,80 м/мин

Технические данные

Тип	SHARC® GT 250 T	SHARC® GT 350 T	SHARC® GT 450 T	SHARC® GT 550 T
Сварочный ток	DC или AC-DC	DC или AC-DC	DC или AC-DC	DC ли AC-DC
Напряжение питания (50/60 Гц)	400 B	400 B	400 B	400 B
Фазы	3	3	3	3
Диапазон сварочного тока	5 - 250 A	5 - 350 A	5 - 450 A	5 - 550 A
Диапазон наладки электрода	25 - 200 A	25 - 285 A	25 - 350 A	25 - 400 A
Диапазон частот (макс.) в версии АС	20 - 200 Гц			
Регулировка баланса (макс.) в версии АС	5 - 95 %	5 - 95 %	5 - 95 %	5 - 95 %
Сварочное напряжение	20 B	24 B	28 B	32 B
Напряжение холостого хода без возбужд.	70 B	70 B	70 B	70 B
Напряжение холостого хода с возбужд. Дуги	1		1	1
Подключенная нагрузка	6,6 кВА	10,5 κBA	13,5 кВА	18,0 кBA
Коэффициент мощности соѕ ф	0,8 (250 A)	0,8 (350 A)	0,8 (350 A)	0,8 (550 A)
ПВ при номинальной нагрузке	250 A (60 %)	350 A (60 %)	450 A (60 %)	550 A (60 %)
ПВ 100%	200 A (100 %)	285 A (100%)	360 A (100%)	440 A (100%)
Режим охлаждения	ПРИНУДИТЕЛЬНЫЙ	ПРИНУДИТЕЛЬНЫЙ	принудительный	ПРИНУДИТЕЛЬНЫЙ
Робо-интерфейс (аналоговый)	опционно	опционно	опционно	опционно
Функция точечной сварки	да	да	да	да
Регулируемое время пре-газа (0-3 сек.)	да	да	да	да
Регулируемое время пост-газа (0-10 сек.)	да	да	да	да
Горячий старт для электродной сварки	да	да	да	да
Регулируемый спад (0-100 $\%$ из I_1)	да	да	да	да
Bec	125 кг (DC)/ 145 кг (AC/DC)	165 кг (DC)/ 180 кг (AC/DC)	200 кг (DC)/ 225 кг (AC/DC)	250 κг (DC)/ 280 κг (AC/DC)
Габариты (ДхШхВ)	98 x 57 x 88 см	102 x 57 x 103 см	102 х 57 х 103 см	102 x 57 x 103 см
Степень защиты	IP23	IP23	IP23	IP23
Маркировка	CE/S	CE/S	CE/S	CE/S
№ арт. SHARC* DC-версия	GSG20000 /GSG21000 (Po6o)	GSG20100/GSG21100 (Робо)	GSG20200/GSG21200 (Po6o)	GSG20300/GSG21300 (Po6o)
№ арт. SHARC AC/DC-версия	GSG30000/GSG31000 (Робо)	GSG30100/GSG31100 (Робо)	GSG30200/GSG31200 (Робо)	GSG30300 /GSG31300 (Po6o)

ый аппарат, кабель заземления, кабель питания / версия с внешним охлаждающим устройством (внутреннее охлаждение по заказу) Стандартное оборудование: свароч Для роботизированной/автоматической версии требуется дополнительный интерфейсный кабель

Дополнительное оборудование (по заказу):

ПДУ, ножной ПДУ, устройство подачи холодной проволоки – мы предлагаем всевозможное дополнительное оборудование для работы со сварочными инверторами SHARC® Т. Специальные варианты комплектации/оборудование проставляются по заказу.

Ножной пульт ДУ для (DC) и (AC/DC) аппаратов SHARC® Т

с кабелем $5x0,75^2$ (5 м), соед. разъемом (5-полюсный), потенциометром 10 кОм Арт. WG00020101.5

Удаленный переключатель SHAR€® Т для I1, I2: ADT. SG10360.T01

Ручной ПДУ SHARC® Т: Арт. SG10360.T01

Устройство подачи холодной проволоки H-CW 8

Для ручной и автоматической сварки TIG DC и AC с применением холодной проволоки

Рабочие режимы (2-тактный и 4-тактный):

- Непрерывная работа
- Импульсный режим 30-400 имп./мин.
- Прерывистый режим 30-400 переключений скорости/мин.

Функции:

- Тлавный выключатель
- 🔌 Потенциометр скорости подачи 1 (v1)
- 🗼 Потенциометр скорости подачи 2 (v2)
- 💥 Потенциометр интервальности времени / времени импульса 1 (t1)
- 💥 Потенциометр времени паузы / времени импульса (t2)
- 💥 Потенциометр времени удержания (tV)
- 💥 Потенциометр времени задержки (tN)
- 💥 Клавиша затяжки проволоки
- 💥 Клавиша параметров памяти
- Переключатель опций скорости подачи проволоки 1 (v1) или внутренний/роботизированный и внешний (потенциометр горелки)
- 💥 Переключатель 2-тактного/4-тактного режимов
- Переключатель программ для выбора функций, роботизированных операций и для выбора ячейки памяти
- 🔌 Потенциометр вытяжки проволоки от 0,00 5,00 см

Сохранение параметров:

7 ячеек памяти для сохранения параметров настройки

Техническая информация:

Диаметр проволоки: 0,6-1,6 мм Скорость подачи (бесступенчатая регулировка): 0,5-15 м/мин Длина подачи (рекомендовано): до 4 м Приводной блок: 4-роликовый Роботизированный/Автоматический режим: опция Напряжение питания: 30 B AC/ 8 A Габариты Д х Ш х В: 64х29х41 см Вес (Без катушки): 24 кг № арт. Уст. подачи холл. пров. H-CW 8-H (ручн.): WG 10471 **№** арт. Уст. подачи холл. пров. H-CW 8-R (авт.): WG10481

№ **арт.** Шланг (1,5 м): SG10391.2 № **арт.** Шланг – добавочная длина (м): SG10391

Двухтактное устройство подачи проволоки PPV1-HCW8

Двухтактное (Push-Pull) устройство подачи проволоки **PPV1-HCW8** для устройств подачи холодной проволоки типа "H-CW8"

№ арт. Двухтактное устройств подачи проволоки PPV1-HCW8: SG10350.6 № арт. Шланг в комплекте (1 м) для устр. подачи проволоки -> PPV: SG90350 № арт. Шланг – доп. длина (м) для устр. подачи проволоки -> PPV: SG80350 Выпускается в варианте для работы с горелкой Push-Pull по специальному заказу.

Сетевой адаптер

Сетевой адаптер для устройства подачи холодной проволоки TIG тип "H-CW8"

Этот сетевой адаптер необходим в случае подключения устройства подачи холодной проволоки Herman к сварочным аппаратам других производителей.

№ арт. сетевого адаптера:

ZU0008064

Переключающее устройство горелки TTS2

Переключающее устройство горелки **TTS2** для соединения 2-х горелок TIG.

Простой автоматический выбор горелки. Для ручного и автоматического режима.

№ арт. переключающего устройства горелки TTS2: WG10495

Устройство переключения горелки TTS2

ПРОМ/ТЕХ/КОМПЛЕКТ

Официальный дистрибьютор в России г. Санкт - Петербург, 194044, улица Чугунная дом 2А. Телефон/факс: 8 (812) 596-30-32 E-mail: info@ptk-welding.ru www.ptk-welding.ru